
Builder

• Builder is a creational design pattern that lets

you construct complex objects step by step.

The pattern allows you to produce different

types and representations of an object using

the same construction code.

raktimchakraborty27@gmail.com 30

Problem

raktimchakraborty27@gmail.com 31

You might make the program too complex by creating a subclass for every possible

configuration of an object.

Contd.

raktimchakraborty27@gmail.com 32

The constructor with lots of parameters has its downside: not all the parameters are needed

at all times.

Solution

raktimchakraborty27@gmail.com 33

The Builder pattern lets you construct complex objects step by step. The Builder doesn’t

allow other objects to access the product while it’s being built.

Contd.

raktimchakraborty27@gmail.com 34

Different builders execute the same task in various ways.

Contd.

raktimchakraborty27@gmail.com 35

The director knows which building steps to execute to get a working product.

Structure

raktimchakraborty27@gmail.com 36

Contd.
• The Builder interface declares product construction steps that are common

to all types of builders.

• Concrete Builders provide different implementations of the construction

steps. Concrete builders may produce products that don’t follow the

common interface.

• Products are resulting objects. Products constructed by different builders

don’t have to belong to the same class hierarchy or interface.

• The Director class defines the order in which to call construction steps, so

you can create and reuse specific configurations of products.

• The Client must associate one of the builder objects with the director.

Usually, it’s done just once, via parameters of the director’s constructor.

Then the director uses that builder object for all further construction.

However, there’s an alternative approach for when the client passes the

builder object to the production method of the director. In this case, you can

use a different builder each time you produce something with the director.

raktimchakraborty27@gmail.com 37

Implementation

raktimchakraborty27@gmail.com 38

The example of step-by-step construction of cars and the user guides that fit those car

models.

Applicability

• Use the Builder pattern to get rid of a “telescopic constructor”.

raktimchakraborty27@gmail.com 39

Creating such a monster is only possible in languages that support

method overloading, such as C# or Java.

• Say you have a constructor with ten optional parameters. Calling such a beast is

very inconvenient; therefore, you overload the constructor and create several shorter

versions with fewer parameters. These constructors still refer to the main one,

passing some default values into any omitted parameters.

• The Builder pattern lets you build objects step by step, using only those steps that you really

need. After implementing the pattern, you don’t have to cram dozens of parameters into your

constructors anymore.

Contd.

• Use the Builder pattern when you want your code to be able to create different

representations of some product (for example, stone and wooden houses)

– The Builder pattern can be applied when construction of various

representations of the product involves similar steps that differ only in the

details. The base builder interface defines all possible construction steps, and

concrete builders implement these steps to construct particular representations

of the product. Meanwhile, the director class guides the order of

construction.uses).

• Use the Builder to construct Composite trees or other complex objects.

– The Builder pattern lets you construct products step-by-step. You could

defer execution of some steps without breaking the final product. You can

even call steps recursively, which comes in handy when you need to build

an object tree. A builder doesn’t expose the unfinished product while

running construction steps. This prevents the client code from fetching an

incomplete result.

raktimchakraborty27@gmail.com 40

Pros and Cons

• You can construct objects step-by-step, defer construction

steps or run steps recursively.

• You can reuse the same construction code when building

various representations of products.

• Single Responsibility Principle. You can isolate complex

construction code from the business logic of the product.

• The overall complexity of the code increases since the pattern

requires creating multiple new classes.

raktimchakraborty27@gmail.com 41

