
Machine Instructions and
Programs

Number, Arithmetic Operations,
and Characters

Signed Integer

• 3 major representations:
Sign-magnitude

One’s complement

Two’s complement

• Assumptions:
4-bit machine word

16 different values can be represented

Roughly half are positive, half are negative

Sign and Magnitude Representation

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6
+7-0

-1

-2

-3

-4

-5
-6

-7

0 100 = + 4

1 100 = - 4

+

-

High order bit is sign: 0 = positive (or zero), 1 = negative
Three low order bits is the magnitude: 0 (000) thru 7 (111)
Number range for n bits = +/-2n-1 -1
Two representations for 0

One’s Complement Representation

• Subtraction implemented by addition & 1's complement

• Still two representations of 0! This causes some problems

• Some complexities in addition

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6
+7-7

-6

-5

-4

-3

-2
-1

-0

0 100 = + 4

1 011 = - 4

+

-

Two’s Complement Representation

• Only one representation for 0

• One more negative number than positive number

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6
+7-8

-7

-6

-5

-4

-3
-2

-1

0 100 = + 4

1 100 = - 4

+

-

like 1's comp
except shifted
one position
clockwise

Binary, Signed-Integer Representations

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0

1
1
1
1

1
1
1
1

1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1

1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1

1+

1-

2+
3+
4+
5+
6+
7+

2-
3-
4-
5-
6-
7-

8-
0+
0-

1+
2+
3+
4+
5+
6+
7+

0+
7-
6-
5-
4-
3-
2-
1-
0-

1+
2+
3+
4+
5+
6+
7+

0+

7-
6-
5-
4-
3-
2-
1-

b3b2b1b0
Sign and

magnitude 1's complement 2's complement

B Values represented

Binary, signed-integer representations.

Addition and Subtraction – 2’s Complement

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

If carry-in to the high
order bit =
carry-out then ignore
carry

if carry-in differs from
carry-out then overflow

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems

2’s-Complement Add and Subtract
Operations

1 1 0 1
0 1 1 1
0 1 0 0

0 0 1 0
1 1 0 0
1 1 1 0
0 1 1 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 0 1
1 1 1 0
1 0 0 1
1 1 1 1
1 0 0 0
0 0 1 0
0 0 1 1
0 1 0 1

4+()

2-()

3+()

2-()

8-()

5+()
+

+

+

+

+

+

1 1 1 0

0 1 0 0
1 0 1 0

0 1 1 1
1 1 0 1
0 1 0 0

6-()
2-()

4+()

3-()
4+()

7+()
+

+
(b)

(d)1 0 1 1
1 1 1 0
1 0 0 1
1 1 0 1
1 0 0 1

0 0 1 0
0 1 0 0

0 1 1 0
0 0 1 1

1 0 0 1
1 0 1 1

1 0 0 1
0 0 0 1

0 0 1 0
1 1 0 1

0 1 0 1

0 0 1 0
0 0 1 1

5-()

2+()
3+()

5+()

2+()
4+()

2-()
7-()

3-()
7-()

6+()
3+()

1+()

7-()
5-()

7-()

2+()
3-()

+

+

-

-

-

-

-

-

(a)

(c)

(e)

(f)

(g)

(h)

(i)

(j)

2's-complement Add and Subtract operations.

Overflow - Add two positive numbers to get a negative
number or two negative numbers to get a positive number

5 + 3 = -8 -7 - 2 = +7

0000
0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110
1111

+0
+1

+2

+3

+4

+5
+6

+7-8

-7

-6

-5

-4
-3

-2
-1

0000
0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110
1111

+0
+1

+2

+3

+4

+5
+6

+7-8

-7

-6

-5

-4
-3

-2
-1

Overflow Conditions

5

3

-8

0 1 1 1
0 1 0 1

0 0 1 1

1 0 0 0

-7

-2

7

1 0 0 0
1 0 0 1

1 1 0 0

1 0 1 1 1

5

2

7

0 0 0 0
0 1 0 1

0 0 1 0

0 1 1 1

-3

-5

-8

1 1 1 1
1 1 0 1

1 0 1 1

1 1 0 0 0

Overflow Overflow

No overflow No overflow
Overflow when carry-in to the high-order bit does not equal carry out

Sign Extension

• Task:
– Given w-bit signed integer x

– Convert it to w+k-bit integer with same value

• Rule:
– Make k copies of sign bit:

– X ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ′ • • • • • •

• • •

w

wk

Sign Extension Example

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 C4 92 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Memory Locations, Addresses,
and Operations

Memory Location, Addresses, and
Operation

• Memory consists of
many millions of
storage cells, each
of which can store 1
bit.

• Data is usually
accessed in n-bit
groups. n is called
word length.

second word

first word

Memory words.

n bits

last word

i th word

•
•
•

•
•
•

Memory Location, Addresses, and
Operation

• 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers
for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=
b31 1=

• • •

Memory Location, Addresses, and
Operation

• To retrieve information from memory, either for one
word or one byte (8-bit), addresses for each location are
needed.

• A k-bit address memory has 2k memory locations, namely
0 – 2k-1, called memory space/ address space.

• 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

• 32-bit memory: 232 = 4G (1G=230)

• 1K(kilo)=210

• 1T(tera)=240

Memory Location, Addresses, and
Operation

• It is impractical to assign distinct addresses to
individual bit locations in the memory.

• The most practical assignment is to have
successive addresses refer to successive byte
locations in the memory – byte-addressable
memory.

• Byte locations have addresses 0, 1, 2, … If
word length is 32 bits, they successive words
are located at addresses 0, 4, 8,…

Big-Endian and Little-Endian
Assignments

2
k

4- 2
k

3- 2
k

2- 2
k

1- 2
k

4-2
k

4-

0 1 2 3

4 5 6 7

00

4

2
k

1- 2
k

2- 2
k

3- 2
k

4-

3 2 1 0

7 6 5 4

Byte addressByte address

(a) Big-endian assignment (b) Little-endian assignment

4

Word
address

•
•
•

•
•
•

Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant
bytes of the word

Memory Location, Addresses, and
Operation

• Address ordering of bytes
• Word alignment

– Words are said to be aligned in memory if they
begin at a byte addr. that is a multiple of the num
of bytes in a word.

• 16-bit word: word addresses: 0, 2, 4,….
• 32-bit word: word addresses: 0, 4, 8,….
• 64-bit word: word addresses: 0, 8,16,….

• Access numbers, characters, and character
strings

Memory Operation

• Load (or Read or Fetch)
 Copy the content. The memory content doesn’t change.

 Address – Load

 Registers can be used

• Store (or Write)
 Overwrite the content in memory

 Address and Data – Store

 Registers can be used

Instruction and Instruction
Sequencing

“Must-Perform” Operations

• Data transfers between the memory and the
processor registers

• Arithmetic and logic operations on data

• Program sequencing and control

• I/O transfers

Register Transfer Notation

• Identify a location by a symbolic name
standing for its hardware binary address (LOC,
R0,…)

• Contents of a location are denoted by placing
square brackets around the name of the
location (R1←[LOC], R3 ←[R1]+[R2])

• Register Transfer Notation (RTN)

Assembly Language Notation

• Represent machine instructions and programs.

• Move LOC, R1 = R1←[LOC]

• Add R1, R2, R3 = R3 ←[R1]+[R2]

CPU Organization

• Single Accumulator
– Result usually goes to the Accumulator

– Accumulator has to be saved to memory quite often

• General Register
– Registers hold operands thus reduce memory traffic

– Register bookkeeping

• Stack
– Operands and result are always in the stack

Instruction Formats

• Three-Address Instructions
– ADD R1, R2, R3 R3 ← [R1] + [R2]

• Two-Address Instructions
– ADD R1, R2 R2 ← [R1] + [R2]

• One-Address Instructions
– ADD M AC ← AC + [M]

• Zero-Address Instructions
– ADD TOS ← [TOS] + [(TOS – 1)]

• RISC Instructions
– Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)

Instruction Formats

Example: Evaluate X = (A+B) ∗ (C+D)
• Three-Address

1. ADD A, B, R1 ; R1 ← [A] + [B]

2. ADD C, D, R2 ; R2 ← [C] + [D]

3. MUL R1, R2, X ; X ← [R1] ∗ [R2]

Instruction Formats

Example: Evaluate X = (A+B) ∗ (C+D)
• Two-Address

1. MOV A, R1 ; R1 ← [A]

2. ADD B, R1 ; R1 ← [R1] + [B]

3. MOV C, R2 ; R2 ← [C]

4. ADD D, R2 ; R2 ← [R2] + [D]

5. MUL R2, R1 ; R1 ← [R1] ∗ [R2]
6. MOV R1, X ; X ← [R1]

Instruction Formats

Example: Evaluate X = (A+B) ∗ (C+D)
• One-Address

1. LOAD A ; AC ← [A]

2. ADD B ; AC ← [AC] + [B]

3. STORE T ; T ← [AC]

4. LOAD C ; AC ← [C]

5. ADD D ; AC ← [AC] + [D]

6. MUL T ; AC ← [AC] ∗ [T]
7. STORE X ; X ← [AC]

Instruction Formats
Example: Evaluate X = (A+B) ∗ (C+D)
• Zero-Address

1. PUSH A ; TOS ← [A]

2. PUSH B ; TOS ← [B]

3. ADD ; TOS ← [A] + [B]

4. PUSH C ; TOS ← [C]

5. PUSH D ; TOS ← [D]

6. ADD ; TOS ← [C] + [D]

7. MUL ; TOS ← (C+D)∗(A+B)
8. POP X ; X ← [TOS]

Instruction Formats
Example: Evaluate X = (A+B) ∗ (C+D)
• RISC

1. LOAD A, R1 ; R1 ← [A]

2. LOAD B, R2 ; R2 ← [B]

3. LOAD C, R3 ; R3 ← [C]

4. LOAD D, R4 ; R4 ← [D]

5. ADD R1, R2, R1 ; R1 ← [R1] + [R2]

6. ADD R3, R4, R3 ; R3 ← [R3] + [R4]

7. MUL R1, R3, R1 ; R1 ← [R1] ∗ [R3]
8. STORE R1, X ; X ← [R1]

Using Registers

• Registers are faster

• Shorter instructions
– The number of registers is smaller (e.g. 32

registers need 5 bits)

• Potential speedup

• Minimize the frequency with which data is
moved back and forth between the memory
and processor registers.

	Machine Instructions and Programs
	Number, Arithmetic Operations, and Characters
	Signed Integer
	Sign and Magnitude Representation
	One’s Complement Representation
	Two’s Complement Representation
	Binary, Signed-Integer Representations
	Addition and Subtraction – 2’s Complement
	2’s-Complement Add and Subtract Operations
	Overflow - Add two positive numbers to get a negative number or two negative numbers to get a positive number
	Overflow Conditions
	Sign Extension
	Sign Extension Example
	Memory Locations, Addresses, and Operations
	Memory Location, Addresses, and Operation
	Memory Location, Addresses, and Operation
	Memory Location, Addresses, and Operation
	Memory Location, Addresses, and Operation
	Big-Endian and Little-Endian Assignments
	Memory Location, Addresses, and Operation
	Memory Operation
	Instruction and Instruction Sequencing
	“Must-Perform” Operations
	Register Transfer Notation
	Assembly Language Notation
	CPU Organization
	Instruction Formats
	Instruction Formats
	Instruction Formats
	Instruction Formats
	Instruction Formats
	Instruction Formats
	Using Registers

