Machine Instructions and Programs

Number, Arithmetic Operations, and Characters

Signed Integer

• 3 major representations:

Sign-magnitude One's complement Two's complement

• Assumptions:

4-bit machine word

16 different values can be represented

Roughly half are positive, half are negative

Sign and Magnitude Representation

High order bit is sign: 0 = positive (or zero), 1 = negativeThree low order bits is the magnitude: 0 (000) thru 7 (111) Number range for n bits = +/-2ⁿ⁻¹ -1 Two representations for 0

One's Complement Representation

- Subtraction implemented by addition & 1's complement
- Still two representations of 0! This causes some problems
- Some complexities in addition

Two's Complement Representation

- Only one representation for 0
- One more negative number than positive number

Binary, Signed-Integer Representations

В	Values represented					
$b_{3}^{}b_{2}^{}b_{1}^{}b_{0}^{}$	Sign and magnitude	1's complement	2's complement			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 7	+ 7	+ 7			
	+ 6	+ 6	+ 6			
	+ 5	+ 5	+ 5			
	+ 4	+ 4	+ 4			
	+ 3	+ 3	+ 3			
	+ 2	+ 2	+ 2			
	+ 1	+ 1	+ 1			
	+ 0	+ 0	+ 0			
	- 0	- 7	- 8			
	- 1	- 6	- 7			
	- 2	- 5	- 6			
	- 3	- 4	- 5			
1 1 0 0	- 4	- 3	- 4			
1 1 0 1	- 5	- 2	- 3			
1 1 1 0	- 6	- 1	- 2			
1 1 1 1	- 7	- 0	- 1			

Binary, signed-integer representations.

Addition and Subtraction – 2's Complement

	4	0100	-4	1100
	+ 3	0011	+ <u>(-3)</u>	1101
If carry-in to the high order bit = carry-out then ignore	7	0111	-7	11001
carry				
if carry-in differs from carry-out then overflow	4	0100	-4	1100
•	<u>- 3</u>	1101	+ 3	0011
	1	10001	-1	1111

Simpler addition scheme makes twos complement the most common choice for integer number systems within digital systems

2's-Complement Add and Subtract **Operations** 0010 +0011 (+2) (+3) 0100 +1010 (a) (b) (+4)(- 6) 0101 (+5)1110 (-2) (+7)(- 5) (- 2) (d) (C) 1011 0111 + 1110+ 1101 (-3) 1001 (-7) 0100 (+4)(e) 1101 1101 (- 3) (- 7) - 1001 + 0 1 1 1 0100 (+4)(f) 0010 (+2) (+4) 0010 - 0100 + 1100 1110 (-2) 0110 (g) 0110 (+6) (+3) - 0011 + 1101 0011 (+3) (-7) (-5) 1001 (h) 1001 - 1011 + 0101 (-2) 1110 (i) 1001 (- 7) (+1) 1001 - 0001 + 1 1 1 1 1000 (-8)

(j) $\begin{array}{c} 0 \ 0 \ 1 \ 0 \\ - \ 1 \ 1 \ 0 \ 1 \\ \end{array}$ (+2) \longrightarrow $\begin{array}{c} 0 \ 0 \ 1 \ 0 \\ + \ 0 \ 0 \ 1 \ 1 \\ \end{array}$ (+5)

2's-complement Add and Subtract operations.

Overflow - Add two positive numbers to get a negative number or two negative numbers to get a positive number

Overflow Conditions

No ove	rflow	No over	flow	
7	0111	-8	1 <mark>1 0 0 0</mark>	
2	0010	5_	1011	
5	0000 0101	-3	1 1 1 1 1 1 0 1	
Overflo	W	Overflow		
-8	1000	7	1 0 1 1 1	
3	0011	2_	1100	
5	0111 0101	-7	1000 1001	

Overflow when carry-in to the high-order bit does not equal carry out

Sign Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make *k* copies of sign bit:

Sign Extension Example

short	int x =	15213;
int	ix =	(int) x;
short	int y =	-15213;
int	iy =	(int) y;

	Decimal		He	ЭХ			Bina	ary	
х	15213			3B	6D			00111011	01101101
ix	15213	00	00	C4	92	00000000	00000000	00111011	01101101
У	-15213			C4	93			11000100	10010011
iy	-15213	FF	FF	C4	93	11111111	11111111	11000100	10010011

Memory Location, Addresses, and

- Memory consists of many millions of storage cells, each of which can store 1 bit.
- Data is usually accessed in *n*-bit groups. *n* is called word length.

Memory words.

• 32-bit word length example

 b_{31} = 1 for negative numbers

(a) A signed integer

- To retrieve information from memory, either for one word or one byte (8-bit), addresses for each location are needed.
- A k-bit address memory has 2^k memory locations, namely 0 – 2^k-1, called memory space/ address space.
- 24-bit memory: 2²⁴ = 16,777,216 = 16M (1M=2²⁰)
- 32-bit memory: $2^{32} = 4G (1G=2^{30})$
- 1K(kilo)=2¹⁰
- 1T(tera)=2⁴⁰

- It is impractical to assign distinct addresses to individual bit locations in the memory.
- The most practical assignment is to have successive addresses refer to successive byte locations in the memory – byte-addressable memory.
- Byte locations have addresses 0, 1, 2, ... If word length is 32 bits, they successive words are located at addresses 0, 4, 8,...

Big-Endian and Little-Endian Assignments Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant bytes of the word

Figure 2.7. Byte and word addressing.

- Address ordering of bytes
- Word alignment
 - Words are said to be aligned in memory if they begin at a byte addr. that is a multiple of the num of bytes in a word.
 - 16-bit word: word addresses: 0, 2, 4,....
 - 32-bit word: word addresses: 0, 4, 8,....
 - 64-bit word: word addresses: 0, 8,16,....
- Access numbers, characters, and character strings

Memory Operation

- Load (or Read or Fetch)
- Copy the content. The memory content doesn't change.
- Address Load
- Registers can be used
- Store (or Write)
- Overwrite the content in memory
- Address and Data Store
- Registers can be used

Instruction and Instruction Sequencing

"Must-Perform" Operations

- Data transfers between the memory and the processor registers
- Arithmetic and logic operations on data
- Program sequencing and control
- I/O transfers

Register Transfer Notation

- Identify a location by a symbolic name standing for its hardware binary address (LOC, R0,...)
- Contents of a location are denoted by placing square brackets around the name of the location (R1←[LOC], R3 ←[R1]+[R2])
- Register Transfer Notation (RTN)

Assembly Language Notation

- Represent machine instructions and programs.
- Move LOC, $R1 = R1 \leftarrow [LOC]$
- Add R1, R2, R3 = R3 ← [R1]+[R2]

CPU Organization

- Single Accumulator
 - Result usually goes to the Accumulator
 - Accumulator has to be saved to memory quite often
- General Register
 - Registers hold operands thus reduce memory traffic
 - Register bookkeeping
- Stack
 - Operands and result are always in the stack

•	Three-Ad	dress Instructions	
	– ADD	R1, R2, R3	R3 ← [R1] + [R2]
•	Two-Add	ress Instructions	
	– ADD	R1, R2	R2 ← [R1] + [R2]
•	One-Add	ress Instructions	
	– ADD	Μ	$AC \leftarrow AC + [M]$
•	Zero-Add	ress Instructions	
	– ADD		$TOS \leftarrow [TOS] + [(TOS - 1)]$
•			

- RISC Instructions
 - Lots of registers. Memory is restricted to Load & Store

Example: Evaluate X = (A+B) * (C+D)

- Three-Address
 - 1. ADD A, B, R1
 - 2. ADD C, D, R2
 - 3. MUL R1, R2, X

- ; $R1 \leftarrow [A] + [B]$
- ; R2 \leftarrow [C] + [D]
- ; X ← [R1] * [R2]

Example: Evaluate X = (A+B) * (C+D)

- Two-Address
 - 1. MOV A, R1
 - 2. ADD B, R1
 - 3. MOV C, R2
 - 4. ADD D, R2
 - 5. MUL R2, R1
 - 6. MOV R1, X

- ; R1 \leftarrow [A]
- ; R1 ← [R1] + [B]
- ; R2 \leftarrow [C]
- ; R2 ← [R2] + [D]
- ; $R1 \leftarrow [R1] * [R2]$
- ; X ← [R1]

Example: Evaluate X = (A+B) * (C+D)

- One-Address
 - 1. LOAD A
 - 2. ADD B
 - 3. STORE T
 - 4. LOAD C
 - 5. ADD D
 - 6. MUL T

7. STORE X

- ; AC \leftarrow [A]
- ; AC \leftarrow [AC] + [B]
- ; T \leftarrow [AC]
- ; AC \leftarrow [C]
- ; AC \leftarrow [AC] + [D]
- ; AC \leftarrow [AC] * [T]
- ; $X \leftarrow [AC]$

Example: Evaluate X = (A+B) * (C+D)

- Zero-Address
 - 1. PUSH A
 - 2. PUSH B
 - 3. ADD
 - 4. PUSH C
 - 5. PUSH D
 - 6. ADD
 - 7. MUL
 - 8. POP X

; TOS \leftarrow [A] ; TOS \leftarrow [B] ; TOS \leftarrow [A] + [B] ; TOS \leftarrow [C] ; TOS \leftarrow [D] ; TOS \leftarrow [C] + [D] ; TOS \leftarrow (C+D)*(A+B) ; X ← [TOS]

Example: Evaluate X = (A+B) * (C+D)

- RISC
 - 1. LOAD A, R1
 - 2. LOAD B, R2
 - C, R3 3. LOAD
 - D, R4 4. LOAD
 - 5. ADD R1, R2, R1
 - 6. ADD R3, R4, R3
 - 7. MUL R1, R3, R1
 - 8. STORE R1, X

- ; R1 \leftarrow [A]
- ; R2 ← [B]
- ; R3 \leftarrow [C]
- ; R4 ← [D]
- ; $R1 \leftarrow [R1] + [R2]$
- ; $R3 \leftarrow [R3] + [R4]$
- ; $R1 \leftarrow [R1] * [R3]$
- ; X ← [R1]

Using Registers

- Registers are faster
- Shorter instructions
 - The number of registers is smaller (e.g. 32 registers need 5 bits)
- Potential speedup
- Minimize the frequency with which data is moved back and forth between the memory and processor registers.