
Machine Instructions and 
Programs



Number, Arithmetic Operations, 
and Characters



Signed Integer

• 3 major representations:
Sign-magnitude

One’s complement

Two’s complement

• Assumptions:
4-bit machine word

16 different values can be represented

Roughly half are positive, half are negative



Sign and Magnitude Representation
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High order bit is sign: 0 = positive (or zero), 1 = negative
Three low order bits is the magnitude: 0 (000) thru 7 (111)
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One’s Complement Representation

• Subtraction implemented by addition & 1's complement

• Still two representations of 0!  This causes some problems

• Some complexities in addition
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Two’s Complement Representation

• Only one representation for 0

• One more negative number than positive number
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Binary, Signed-Integer Representations
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Addition and Subtraction – 2’s Complement
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If carry-in to the high 
order bit =
carry-out then ignore
carry

if carry-in differs from
carry-out then overflow

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems



2’s-Complement Add and Subtract 
Operations

1 1 0 1
0 1 1 1
0 1 0 0

0 0 1 0
1 1 0 0
1 1 1 0
0 1 1 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 0 1
1 1 1 0
1 0 0 1
1 1 1 1
1 0 0 0
0 0 1 0
0 0 1 1
0 1 0 1

4+( )

2-( )

3+( )

2-( )

8-( )

5+( )
+

+

+

+

+

+

1 1 1 0

0 1 0 0
1 0 1 0

0 1 1 1
1 1 0 1
0 1 0 0

6-( )
2-( )

4+( )

3-( )
4+( )

7+( )
+

+
(b)

(d)1 0 1 1
1 1 1 0
1 0 0 1
1 1 0 1
1 0 0 1

0 0 1 0
0 1 0 0

0 1 1 0
0 0 1 1

1 0 0 1
1 0 1 1

1 0 0 1
0 0 0 1

0 0 1 0
1 1 0 1

0 1 0 1

0 0 1 0
0 0 1 1

5-( )

2+( )
3+( )

5+( )

2+( )
4+( )

2-( )
7-( )

3-( )
7-( )

6+( )
3+( )

1+( )

7-( )
5-( )

7-( )

2+( )
3-( )

+

+

-

-

-

-

-

-

(a)

(c)

(e)

(f)

(g)

(h)

(i)

(j)

2's-complement Add and Subtract operations.



Overflow - Add two positive numbers to get a negative 
number or two negative numbers to get a positive number

5 + 3 = -8 -7 - 2 = +7
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Overflow Conditions
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Sign Extension

• Task:
– Given w-bit signed integer x

– Convert it to w+k-bit integer with same value

• Rule:
– Make k copies of sign bit:

– X ′ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ′ • • • • • •

• • •

w

wk



Sign Extension Example

short int x =  15213;
int      ix = (int) x; 
short int y = -15213;
int      iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 C4 92 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011



Memory Locations, Addresses, 
and Operations



Memory Location, Addresses, and 
Operation

• Memory consists of 
many millions of 
storage cells, each 
of which can store 1 
bit.

• Data is usually 
accessed in n-bit 
groups. n is called 
word length.

second word

first word

Memory words.

n bits

last word

i th word

•
•
•

•
•
•



Memory Location, Addresses, and 
Operation

• 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers
for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=
b31 1=

• • •



Memory Location, Addresses, and 
Operation

• To retrieve information from memory, either for one 
word or one byte (8-bit), addresses for each location are 
needed.

• A k-bit address memory has 2k memory locations, namely 
0 – 2k-1, called memory space/ address space.

• 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

• 32-bit memory: 232 = 4G (1G=230)

• 1K(kilo)=210

• 1T(tera)=240



Memory Location, Addresses, and 
Operation

• It is impractical to assign distinct addresses to 
individual bit locations in the memory.

• The most practical assignment is to have 
successive addresses refer to successive byte 
locations in the memory – byte-addressable 
memory.

• Byte locations have addresses 0, 1, 2, … If 
word length is 32 bits, they successive words 
are located at addresses 0, 4, 8,…



Big-Endian and Little-Endian 
Assignments
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Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant 
bytes of the word



Memory Location, Addresses, and 
Operation

• Address ordering of bytes
• Word alignment

– Words are said to be aligned in memory if they 
begin at a byte addr. that is a multiple of the num 
of bytes in a word.

• 16-bit word: word addresses: 0, 2, 4,….
• 32-bit word: word addresses: 0, 4, 8,….
• 64-bit word: word addresses: 0, 8,16,….

• Access numbers, characters, and character 
strings



Memory Operation

• Load (or Read or Fetch)
 Copy the content. The memory content doesn’t change.

 Address – Load

 Registers can be used

• Store (or Write)
 Overwrite the content in memory

 Address and Data – Store

 Registers can be used



Instruction and Instruction 
Sequencing



“Must-Perform” Operations

• Data transfers between the memory and the 
processor registers

• Arithmetic and logic operations on data

• Program sequencing and control

• I/O transfers



Register Transfer Notation

• Identify a location by a symbolic name 
standing for its hardware binary address (LOC, 
R0,…)

• Contents of a location are denoted by placing 
square brackets around the name of the 
location (R1←[LOC], R3 ←[R1]+[R2])

• Register Transfer Notation (RTN)



Assembly Language Notation

• Represent machine instructions and programs.

• Move LOC, R1 = R1←[LOC]

• Add R1, R2, R3 = R3 ←[R1]+[R2]



CPU Organization

• Single Accumulator
– Result usually goes to the Accumulator

– Accumulator has to be saved to memory quite often

• General Register
– Registers hold operands thus reduce memory traffic

– Register bookkeeping

• Stack
– Operands and result are always in the stack



Instruction Formats

• Three-Address Instructions
– ADD R1, R2, R3 R3 ← [R1] + [R2]

• Two-Address Instructions
– ADD R1, R2 R2 ← [R1] + [R2]

• One-Address Instructions
– ADD M AC ← AC + [M]

• Zero-Address Instructions
– ADD TOS ← [TOS] + [(TOS – 1)]

• RISC Instructions
– Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)



Instruction Formats

Example:   Evaluate X = (A+B) ∗ (C+D)
• Three-Address

1. ADD A, B, R1 ; R1 ← [A] + [B]

2. ADD C, D, R2 ; R2 ← [C] + [D]

3. MUL R1, R2, X ;  X ← [R1] ∗ [R2]



Instruction Formats

Example:   Evaluate X = (A+B) ∗ (C+D)
• Two-Address

1. MOV A, R1 ; R1 ← [A]

2. ADD B, R1 ; R1 ← [R1] + [B]

3. MOV C, R2 ; R2 ← [C]

4. ADD D, R2 ; R2 ← [R2] + [D]

5. MUL R2, R1 ; R1 ← [R1] ∗ [R2]
6. MOV R1, X ; X ← [R1]



Instruction Formats

Example:   Evaluate X = (A+B) ∗ (C+D)
• One-Address

1. LOAD A ; AC ← [A]

2. ADD B ; AC ← [AC] + [B]

3. STORE T ; T ← [AC] 

4. LOAD C ; AC ← [C]

5. ADD D ; AC ← [AC] + [D]

6. MUL T ; AC ← [AC] ∗ [T]
7. STORE X ; X ← [AC]



Instruction Formats
Example:   Evaluate X = (A+B) ∗ (C+D)
• Zero-Address

1. PUSH A ; TOS ← [A]

2. PUSH B ; TOS ← [B]

3. ADD ; TOS ← [A] + [B]

4. PUSH C ; TOS ← [C]

5. PUSH D ; TOS ← [D]

6. ADD ; TOS ← [C] + [D]

7. MUL ; TOS ← (C+D)∗(A+B)
8. POP X ; X ← [TOS]



Instruction Formats
Example:   Evaluate X = (A+B) ∗ (C+D)
• RISC

1. LOAD A, R1 ; R1 ← [A]

2. LOAD B, R2 ; R2 ← [B]

3. LOAD C, R3 ; R3 ← [C]

4. LOAD D, R4 ; R4 ← [D]

5. ADD R1, R2, R1 ; R1 ← [R1] + [R2]

6. ADD R3, R4, R3 ; R3 ← [R3] + [R4]

7. MUL R1, R3, R1 ; R1 ← [R1] ∗ [R3]
8. STORE R1, X ; X ← [R1]



Using Registers

• Registers are faster

• Shorter instructions
– The number of registers is smaller (e.g. 32 

registers need 5 bits)

• Potential speedup

• Minimize the frequency with which data is 
moved back and forth between the memory 
and processor registers.
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